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Abstract. Recently, Siamese network based trackers have received
tremendous interest for their fast tracking speed and high performance.
Despite the great success, this tracking framework still suffers from sev-
eral limitations. First, it cannot properly handle large object rotation.
Second, tracking gets easily distracted when the background contains
salient objects. In this paper, we propose two simple yet effective mech-
anisms, namely angle estimation and spatial masking, to address these
issues. The objective is to extract more representative features so that
a better match can be obtained between the same object from different
frames. The resulting tracker, named Siam-BM, not only significantly
improves the tracking performance, but more importantly maintains
the realtime capability. Evaluations on the VOT2017 dataset show that
Siam-BM achieves an EAO of 0.335, which makes it the best-performing
realtime tracker to date.

Keywords: Realtime tracking · Siamese network ·
Deep convolutional neural networks

1 Introduction

Generic visual object tracking is a challenging and fundamental task in the area
of computer vision and artificial intelligence. A tracker is initialized with only
the bounding box of an unknown target in the first frame. The task of the tracker
is to predict the bounding boxes of the target in the following frames. There are
numerous applications of object tracking, such as augmented reality, surveillance
and autonomous systems. However, robust and precise tracking is still an open
problem.
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In the past a few years, with the penetration of deep convolutional neural
networks (DCNN) in various vision problems, there emerge a large number of
DCNN-based trackers [2,3,5,7,11–13,20–22,24,25], among which the siamese
network based trackers have received great attention. The pioneering work in
this category is the SiamFC tracker [2]. The basic idea is to use the same DCNN
to extract features from the target image patch and the search region, and to
generate a response map by correlating the two feature maps. The position with
the highest response indicates the position of the target object in the search
region. The DCNN is pre-trained and remains unchanged during testing time.
This allows SiamFC to achieve high tracking performance in realtime. Follow-up
work of SiamFC includes SA-Siam, SiamRPN, RASNet, EAST, DSiam, CFNET
and SiamDCF [10,12,14,18,25,26,29] (Fig. 1).

Ground Truth SA-Siam (Free Angle) Siam-BM(Ours)

Fig. 1. Comparison with our tracker and baseline tracker. Best view in color.

Despite the great success of siamese network-based trackers, there are still
some limitations in this framework. First, as previous research [15,23,32] pointed
out, the CNN features are not invariant to large image transformations such as
scaling and rotation. Therefore, SiamFC does not perform well when the object
has large scale change or in-plane rotation. This problem is exaggerated when
the tracked object is non-square, because there is no mechanism in the SiamFC
framework that can adjust the orientation or the aspect ratio of the tracked
object bounding box. Second, it is hard to determine the spatial region from
which DNN features should be extracted to represent the target object. Gener-
ally speaking, including a certain range of the surrounding context is helpful to
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tracking, but too many of them could be unprofitable especially when the back-
ground contains distracting objects. Recently, Wang et al. [26] also observed this
problem and they propose to train a feature mask to highlight the features of
the target object.

In this paper, we revisit the SiamFC tracking framework and propose two
simple yet effective mechanisms to address the above two issues. The compu-
tational overhead of these two mechanisms is kept low, such that the resulting
tracker, named Siam-BM, can still run in real-time on GPU.

First, our tracker not only predicts the location and the scale of the target
object, but also predicts the angle of the target object. This is simply achieved
by enumerating several angle options and computing DCNN features for each
option. However, in order to maintain the high speed of the tracker, it is necessary
to trim the explosive number of (scale, angle) combinations without tampering
the tracking performance. Second, we propose to selectively apply a spatial mask
to CNN feature maps when the possibility of distracting background objects is
high. We apply such a mask when the aspect ratio of the target bounding box
is far apart from 1:1. This simple mechanism not only saves the efforts to train
an object-specific mask, but allows the feature map to include a certain amount
of information of the background, which is in general helpful to tracking. Last,
we also adopt a simple template updating mechanism to cope with the gradual
appearance change of the target object. All these mechanisms are toward the
same goal to achieve a better match between the same object from different
frames. Therefore, the resulting tracker is named Siam-BM.

We carry out extensive experiments for the proposed Siam-BM tracker, over
both the OTB and the VOT benchmarks. Results show that Siam-BM achieves
an EAO of 0.335 at the speed of 32 fps on VOT-2017 dataset. It is the best-
performing realtime tracker in literature.

The rest of the paper is organized as follows. We review related work in
Sect. 2. In Sect. 3, we revisit the SiamFC tracking framework and explain the
proposed two mechanisms in details. Section 4 provides implementation details
of Siam-BM and presents the experimental results. We finally conclude with
some discussions in Sect. 5.

2 Related Work

Visual object tracking is an important computer vision problem. It can be mod-
eled as a similarity matching problem. In recent years, with the widespread use
of deep neural networks, there emerge a bunch of Siamese network based track-
ers, which performs similarity matching based on extracted DCNN features.
The pioneering work in this category is the fully convolutional Siamese network
(SiamFC) [2]. SiamFC extract DCNN features from the target patch and the
search region using AlexNet. Then, a response map is generated by correlating
the two feature maps. The object is tracked to the location where the highest
response is obtained. A notable advantage of this method is that it needs no or
little online training. Thus, real-time tracking can be easily achieved.
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There are a large number of follow-up work [8,10,12,14,18,24–26,29,30] of
SiamFC. EAST [14] attempts to speed up the tracker by early stopping the fea-
ture extractor if low-level features are sufficient to track the target. CFNet [29]
introduces correlation filters for low level CNNs features to speed up tracking
without accuracy drop. SINT [24] incorporates the optical flow information and
achieves better performance. However, since computing optical flow is compu-
tationally expensive, SINT only operates at 4 frames per second (fps). DSiam
[10] attempts to online update the embeddings of tracked target. Significantly
better performance is achieved without much speed drop. HP [8] tries to tune
hyperparameters for each sequence in SiamFC [2] by optimizing it with continu-
ous Q-Learning. RASNet [26] introduces three kinds of attention mechanisms for
SiamFC [2] tracker. The authors share the same vision with us to look for more
precise feature representation for the tracked object. SiamRPN [18] includes
a region proposal subnetwork to estimate the aspect ratio of the target object.
This network will generate a more compact bounding box when the target shape
changes. SA-Siam [12] utilizes complementary appearance and semantic features
to represent the tracked object. A channel-wise attention mechanism is used for
semantic feature selection. SA-Siam achieves a large performance gain at a small
computational overhead.

Apparently we are not the first who concerns transformation estimation in
visual object tracking. In correlation filter based trackers, DSST [4] and SAMF
[19] are early work that estimates the scale change of the tracked object. DSST
[4] does so by learning separate discriminative correlation filters for translation
and scale estimation. SAMF [19] uses a scale pyramid to search corresponding
target scale. Recently, RAJSSC [31] proposes to perform both scale and angle
estimation in a unified correlation tracking framework by using the Log-Polar
transformation. In SiamFC-based trackers, while the scale estimation has been
considered in the original SiamFC tracker, angle estimation has not been con-
sidered before.

There are also a couple of previous research efforts to suppress the back-
ground noise. SRDCF [6] and DeepSRDCF [5] reduce background noise by intro-
ducing the spatial regularization term in loss function during the online train-
ing of correlation filters. RASNet [26] and SA-Siam [12] are two SiamFC-based
trackers. They adopt spatial attention or channel-wise attention in the feature
extraction network. They both need careful training of the attention blocks.

3 Siam-BM Tracker

Our tracker Siam-BM is built upon the recent SA-Siam tracker [12], which is in
turn built upon the SiamFC tracker [2]. The main difference between SA-Siam
and SiamFC trackers is that the former extracts semantic features in addition to
appearance features for similarity matching. In this section, we will first revisit
the SiamFC tracking framework and then present the two proposed mechanisms
in Siam-BM towards a better matching of object features.
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3.1 An Overview of the SiamFC Tracking Framework

Figure 2 shows the basic operations in the SiamFC tracking framework. The
input of the tracker is the target object bounding box B0 in the first frame F1.
A bounding box can be described by a four-tuple (x, y, w, h), where (x, y) is the
center coordinates and w, h are the width and the height, respectively. SiamFC
crops the target patch T from the first frame, which is a square region covering
B0 and a certain amount of surrounding context. When the tracker comes to
the ith frame, several candidate patches {C1, C2, ...CM} are drawn, all of which
are centered at the tracked location of the previous frame, but differ in scales.
In the original SiamFC [2] work, M is set to 3 or 5 to deal with 3 or 5 different
scales.

DC
N

N
DC

N
N

Target Object 
Bounding Box

Target Patch from F1

Candidate Patches from Fi

*
Response Maps

Fig. 2. The SiamFC tracking framework

Both the target patch and the candidate patches go through the same DCNN
network, which is fixed during testing time. The process of extracting DCNN
features can be described by a function φ(·). Then, φ(T ) is correlated with
φ(C1) through φ(CM ) and M response maps {R1, R2, ...RM} are computed.
The position with the highest value in the response maps is determined by:

(xi, yi,mi) = arg max
x,y,m

Rm, (m = 1...M), (1)

where xi, yi are the coordinates of the highest-value position and m is the index
of the response map from which the highest value is found. Then, the tracking
result is given by Bi = (xi, yi, smi

· w, smi
· h), where smi

is the scale factor of
the mth

i candidate patch.
In this process, SiamFC tracker only determines the center position and the

scale of the target object, but keeps the orientation and aspect ratio unchanged.
This becomes a severe limitation of SiamFC tracker.



Towards a Better Match in Siamese Network Based Visual Object Tracker 137

3.2 Angle Estimation

As previous research [15,23,32] has pointed out, DCNN features are not invariant
to large image transformations, such as scaling and rotation. While scaling has
been handled in the original SiamFC tracker, the rotation of the target object
is not considered. Ideally, the change of object angle, or object rotation, can be
similarly addressed as object scaling. Specifically, one could enumerate several
possible angle changes and increase the number of candidate patches for similar-
ity matching. However, with M scale choices and N angle choices, the number
of candidate patches becomes M × N . It is quite clear that the tracker speed is
inversely proportional to the number of candidate patches. Using contemporary
GPU hardware, a SiamFC tracker becomes non-realtime even when M = N = 3.

Knowing the importance of realtime tracking, we intend to find a mechanism
to reduce the number of candidate patches without tampering the performance
of the tracker. The solution turns out to be a simple one: the proposed Siam-BM
tracker adjusts the properties (scale or angle) of the tracked object only one at
a time. In other words, Siam-BM can adjust both scale and angle in two frames,
if necessary. As such, the number of candidate patches is reduced from M × N
to M + N − 1. In our implementation, M = N = 3, so only 5 candidate patches
are involved in each tracking process.

DC
NN

DC
NN

*

Response maps labeled with (s, a)

(1.0375, 0)

(0.964, 0)

(1, 0)

(1, +π/8)

(1, -π/8)

Candidate patches from F6, each labeled with (s, a)

(1.0375, 0)

(0.964, 0)

(1, 0)

(1, +π/8)

(1, -π/8)

Target Patch

Fig. 3. Illustrating the scale and angle estimation in Siam-BM.

Mathematically, each candidate patch is associated with an (s, a) pair, where
s is the scaling factor and a is the rotation angle. It is forced that s = 1 (no
scale change) when a �= 0 (angle change), and a = 0 when s �= 1. Similarly, the
tracked object is determined by:

(xi, yi, ki) = arg max
x,y,k

Rk, (k = 1, 2, ...,K), (2)

where K = M + N − 1 is the number of candidate patches. (xi, yi) gives the
center location of the tracked object and ki is associated with an (s, a) pair,
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giving an estimation of the scale and angle changes. Both types of changes are
accumulated during the tracking process.

Figure 3 illustrates the scale and angle estimation in the proposed Siam-BM
tracker. In the figure, each candidate patch and each response map are labeled
with the corresponding (s, a) pair. We can find that, when the target object has
the same orientation in the target patch as in the candidate patch, the response
is dramatically increased. In this example, the highest response in the map with
(1,−π/8) is significantly higher than the top values in other maps.

3.3 Spatial Mask

Context information is helpful during tracking. However, including too much
context information could be distracting when the background has salient objects
or prominent features. In the SiamFC framework, the target patch is always a
square whose size is determined only by the area of the target object. Figure 4
shows some examples of target patches containing objects with different aspect
ratios. It can be observed that, when the target object is a square, the background
is made up of narrow stripes surrounding the target object, so the chance of
having an integral salient object in it is small. But when the aspect ratio of the
target object is far apart from 1 (vertical or horizontal), it is more likely to have
salient objects in the background area.

Fig. 4. Some examples of target patches containing objects with different aspect ratios.
Target patches tend to include salient background objects when the object aspect ratio
is far apart from 1:1.

We propose to selectively apply spatial mask to the target feature map. In
particular, when the aspect ratio of the target object exceeds a predefined thresh-
old thr, a corresponding mask is applied. We have mentioned that the proposed
Siam-BM tracker is built upon a recent tracker named SA-Siam [12]. In SA-Siam,
there is an attention module which serves a similar purpose. However, we find
that the spatial mask performs better and is more stable than the channel-wise
attention scheme. Therefore, we replace the channel attention model in SA-Siam
with spatial masking in Siam-BM.
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3.4 The Siam-BM Tracker

Siam-BM is built upon SA-Siam [12], which contains a semantic branch and
an appearance branch for feature extraction. The target patch has a size of
127×127 as in SiamFC, and the candidate patches have a size of 255×255. We set
M = N = 3, so that there are 5 candidate patches and their corresponding scale
and angle settings are (s, a) = (1.0375, 0), (0.964, 0), (1, 0), (1, π/8), (1,−π/8).
Correspondingly, five response maps are generated after combining semantic
and appearance branches. Similar to SiamFC and SA-Siam, normalization and
cosine window are applied to each of the five response maps. An angle penalty of
0.975 is applied when a �= 0 and a scale penalty of 0.973 is applied when s �= 1.

M
ask for Conv4

M
ask for Conv5

Fig. 5. Spatial feature mask when the aspect ratio of target object exceeds a predefined
threshold. Left two masks: h/w > thr; right two masks: w/h > thr; middle two masks:
max{w/h, h/w} < thr.

Following SA-Siam, both conv4 and conv5 features are used, and the spatial
resolutions are 8 × 8 and 6 × 6, respectively. Spatial mask is applied when the
aspect ratio is greater than thr = 1.5. Figure 5 shows the fixed design of spatial
masks when max{w

h , h
w} > thr. The white grids indicate a coefficient of 1 and

the black grids indicate a coefficient of 0.
In addition, we perform template updating in Siam-BM. The template for

frame t, denoted by φ(Tt) is defined as followings:

φ(Tt) = λS × φ(T1) + (1 − λS) × φ(Tu
t ), (3)

φ(Tu
t ) = (1 − λU ) × φ(Tu

t−1) + λU × φ̂(Tt−1). (4)

where φ̂(Tt−1) is the feature of the tracked object in frame t − 1. It can be
cropped from the feature map of candidate regions of frame t − 1. φ(Tu

t ) is the
moving average of feature maps with updating rate λU . λS is the weight of the
first frame. In our implementation, we set λS = 0.5, λU = 0.006.

Note that the spatial mask is only applied to the semantic branch. This
is because semantic responses are more sparse and centered than appearance
responses, and it is less likely to exclude important semantic responses with
spatial masks. The attention module in SA-Siam is removed.
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4 Experiments

In this section, we evaluate the performance of Siam-BM tracker against state-
of-the-art realtime trackers and carry out ablation studies to validate the con-
tribution of angle estimation and spatial masking.

4.1 Datasets and Evaluation Metrics

OTB: The object tracking benchmarks (OTB) [27,28] consist of two major
datasets, namely OTB-2013 and OTB-100, which contain 51 and 100 sequences
respectively. The two standard evaluation metrics on OTB are success rate and
precision. For each frame, we compute the IoU (intersection over union) between
the tracked and the groundtruth bounding boxes, as well as the distance of their
center locations. A success plot can be obtained by evaluating the success rate
at different IoU thresholds. Conventionally, the area-under-curve (AUC) of the
success plot is reported. The precision plot can be acquired in a similar way, but
usually the representative precision at the threshold of 20 pixels is reported.

VOT: We use the recent version of the VOT benchmark, denoted by VOT2017
[17]. The VOT benchmarks evaluate a tracker by applying a reset-based method-
ology. Whenever a tracker has no overlap with the ground truth, the tracker will
be re-initialized after five frames. Major evaluation metrics of VOT benchmarks
are accuracy (A), robustness (R) and expected average overlap (EAO). A good
tracker has high A and EAO scores but low R scores.

In addition to the evaluation metrics, VOT differs from OTB in groundtruth
labeling. In VOT, the groundtruth bounding boxes are not always upright.
Therefore, we only evaluate the full version of Siam-BM on VOT. OTB is used
to validate the effectiveness of spatial mask.

4.2 Training Siam-BM

Similar to SA-Siam, the appearance network and the fuse module in semantic
branch are trained using the ILSVRC-2015 video dataset (only color images are
used). The semantic network uses the pretrained model for image classification
on ILSVRC. Among a total of more than 4,000 sequences, there are around 1.3
million frames and about 2 million tracked objects with groundtruth bounding
boxes. We strictly follow the separate training strategy in SA-Siam and the two
branches are not combined until testing time.

We implement our model in TensorFlow [1] 1.7.0 framework in Python 3.5.2
environment. Our experiments are performed on a PC with a Xeon E5-2690
2.60 GHz CPU and a Tesla P100 GPU.

4.3 Ablation Analysis

Angle Estimation: We first evaluate whether angle estimation improves the
performance on the VOT benchmark. Spatial masking is not added, so our
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method is denoted by Siam-BM (w/o mask). There are two baseline methods. In
addition to vanilla SA-Siam, we implement a variation of SA-Siam, denoted by
SA-Siam (free angle). Specifically, when the bounding box of the tracked object
is not upright in the first frame, the reported tracking results are tilted by the
same angle in all the subsequent frames. Table 1 shows the EAO as well as accu-
racy and robustness of the three comparing schemes. Note that the performance
of SA-Siam is slightly better than that reported in their original paper, which
might due to some implementation differences. We can find that angle estimation
significantly improves the tracker performance even when it is compared with
the free angle version of SA-Siam.

Table 1. Comparison between Siam-BM (w/o mask) and two baseline trackers shows
the effectiveness of angle estimation.

Trackers EAO Accuracy Robustness

SA-Siam (vanilla) 0.261 0.505 1.276

SA-Siam (free angle) 0.287 0.529 1.234

Siam-BM (w/o mask) 0.301 0.544 1.305

Spatial Mask: We use the OTB benchmark for this ablation study. Angle esti-
mation is not added to the trackers evaluated in this part, therefore our method
is denoted by Siam-BM (mask only). For all the 100 sequences in OTB bench-
mark, we compute the aspect ratio of the target object using r = max( h

w , w
h ),

where w and h are the width and height of the groundtruth bounding box in
the first frame. We set a threshold thr, and if r > thr, the object is called an
elongated object. Otherwise, we call the object a mediocre object. At the testing
stage, Siam-BM (mask only) applies spatial mask to elongated objects. At the
training stage, we could either use the full feature map or the masked feature
map for elongated objects. For mediocre objects, mask is not applied in training
or testing. The comparison between different training and testing choices are
included in Table 2. Comparing (3)(4) with (5)(6) in the Table, we can conclude
that applying spatial mask significantly improves the tracking performance for
elongated objects. Comparison between (3) and (4) shows that training with
spatial mask will further improve the performance for elongated objects, which
agrees with the common practice to keep the consistency of training and testing.
An interesting finding is obtained when we comparing (1) with (2). If we apply
spatial mask to elongated objects during training, the Siamese network seems to
be trained in a better shape and the tracking performance for mediocre objects
is also improved even though no spatial mask is applied during testing time.

We then compare the performance of Siam-BM (mask only) with the state-of-
the-art realtime trackers on OTB-2013 and OTB-100, and the results are shown
in Table 3 and Fig. 6. The improvement of Siam-BM (mask only) with respect
to SA-Siam demonstrates that the simple spatial masking mechanism is indeed
effective.
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Table 2. Comparison between training and testing choices with or without spatial
mask.

Training Testing

Mediocre object Elongated object

No mask w/mask w/o mask

w/mask 0.681 (1) 0.654 (3) 0.581 (5)

w/o mask 0.665 (2) 0.644 (4) 0.609 (6)
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Fig. 6. Comparing SiamBM (Mask only) with other high performance and real-time
trackers

Fig. 7. Performance gain of feature masking is positively correlated with the deviation
of aspect ratio from 1.
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Figure 7 shows the relationship between the object aspect ratio and the per-
formance gain of spatial masking. Consistent with our observation, when the
aspect ratio is far apart from 1, doing spatial masking is helpful. However, when
the object is a mediocre one, masking the features is harmful. In general, the
performance gain of feature masking is positively correlated with the deviation
of aspect ratio from 1.

Table 3. Comparing SiamBM (mask only) with other high performance and real-time
trackers

Trackers OTB2013 OTB100 FPS

AUC Prec. AUC Prec.

ECOhc [3] 0.652 0.874 0.643 0.856 60

BACF [16] 0.656 0.859 0.621 0.822 35

PTAV [9] 0.663 0.895 0.635 0.849 25

SA-Siam [12] (baseline) 0.677 0.896 0.657 0.865 50

Siam-BM (mask only) 0.686 0.898 0.662 0.864 48

Siam-BM: Finally, we show in Table 4 how the performance of Siam-BM is
gradually improved with our proposed mechanisms. The EAO of the full-fledged
Siam-BM reaches 0.335 on VOT2017, which is a huge improvement from 0.287
achieved by SA-Siam. Of course, as we add more mechanisms in Siam-BM, the
tracking speed also drops, but the full-fledged Siam-BM still runs in realtime.

Table 4. Analysis of our tracker Siam-BM on the VOT2017. The impact of progres-
sively integrating one contribution at a time is depicted.

Baseline Angle Spatial Template

SA-Siam =⇒ Estimation =⇒ Mask =⇒ Updating

EAO 0.287 0.301 0.322 0.335

Accuracy 0.529 0.544 0.551 0.563

Robustness 1.234 1.305 1.07 0.977

FPS 50 35 34 32

4.4 Comparison with the State-of-the-Art Trackers

We evaluate our tracker in VOT2017 main challenge and realtime subchallenge.
The final model in this paper combines all components mentioned in previous
section. We do not evaluate the final model in OTB because the groundtruth
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labeling in OTB is always upright bounding boxes and applying rotation does
not produce a higher IoU even when the tracked bounding box is more precise
and tight.

As shown in Fig. 8, our Siam-BM tracker is among the best trackers even
when non-realtime trackers are considered. From Fig. 9, we can see that Siam-BM
outperforms all realtime trackers in VOT2017 challenge by a large margin. The
Accuracy-Robustness plot in Fig. 10 also shows the superiority of our tracker.

We also compare the EAO value of our tracker with some of the latest track-
ers. RASNet [26] achieves an EAO number of 0.281 in the main challenge and
0.223 in the realtime subchallenge. SiamRPN [18] achieves an EAO number of
0.243 in the realtime subchallenge. The EAO number achieved by Siam-BM is
much higher.
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5 Conclusion

In this paper, we have designed a SiamFC-based visual object tracker named
Siam-BM. The design goal is to achieve a better match between feature maps of
the same object from different frames. In order to keep the realtime capability of
the tracker, we propose to use low-overhead mechanisms, including parallel scale
and angle estimation, fixed spatial mask and moving average template updating.
The proposed Siam-BM tracker outperforms state-of-the-art realtime trackers by
a large margin on the VOT2017 benchmark. It is even comparable to the best
non-realtime trackers. In the future, we will investigate the adaptation of object
aspect ratio during tracking.
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